Ś

Disorder-sensitive superconductivity in the doped iron silicide superconductor $(Lu_{1-x}R_x)_2Fe_3Si_5$ (*R*=Sc, Y, and Dy)

Tadataka Watanabe, Hiroki Sasame, Hiroaki Okuyama, Kouichi Takase, and Yoshiki Takano

Department of Physics, College of Science and Technology (CST), Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan

(Received 30 June 2009; published 8 September 2009)

We studied the effect of nonmagnetic and magnetic impurities on superconductivity in Lu₂Fe₃Si₅ by smallamount substitution of the Lu site and investigated structural, magnetic, and electrical properties of nonmagnetic $(Lu_{1-x}Sc_x)_2Fe_3Si_5$, $(Lu_{1-x}Y_x)_2Fe_3Si_5$, and magnetic $(Lu_{1-x}Dy_x)_2Fe_3Si_5$. The rapid depression of T_c by nonmagnetic impurities in accordance with the increase in the residual resistivity reveals the strong pair breaking dominated by disorder.

DOI: 10.1103/PhysRevB.80.100502

PACS number(s): 74.20.Rp, 74.62.Dh, 74.70.Dd, 74.25.Jb

Recent discovery of high- T_c superconductivity in the FeAs systems has shed a brilliant light on Fe-based substances as a rich vein of new exotic superconductors.¹ In addition to deeper studies of the FeAs systems, it is also indispensable to explore the exotic superconductivity in Febased substances other than the FeAs family. Ternary iron silicide Lu₂Fe₃Si₅ is a non-FeAs-family superconductor discovered in 1980.² This compound crystallizes in the tetragonal Sc₂Fe₃Si₅-type structure consisting of a quasi-onedimensional iron chain along the c axis and quasi-twodimensional iron squares parallel to the basal plane.³ The superconductivity occurs at $T_c = 6.0$ K, which is exceptionally high among the Fe-based compounds other than the FeAs family. According to Mössbauer experiments, Fe atoms in Lu₂Fe₃Si₅ carry no magnetic moment.⁴ Taking into account the absence of superconductivity in the isoelectronic Lu₂Ru₃Si₅ and Lu₂Os₃Si₅,⁵ Fe 3*d* electrons in Lu₂Fe₃Si₅ should play significant role in the occurrence of the superconductivity.

To unveil the pairing mechanism of the exotic superconductivity, it is crucial to determine the superconducting gap function. In Lu₂Fe₃Si₅, recent measurements of specific heat⁶ and penetration depth⁷ reported the evidence for two-gap superconductivity, similar to MgB₂ which is considered to be a two-gap s-wave superconductor.⁸ The Josephson effect suggested the spin-singlet superconductivity in Lu₂Fe₃Si₅.⁹ On the other hand, past experimental studies in Lu₂Fe₃Si₅ reported peculiar superconducting properties which are different from MgB₂: for instance, a power-law temperature dependence of specific heat below T_c (Ref. 10) and a remarkable depression of T_c by nonmagnetic impurities.^{11,12} In addition, recent photoemission spectroscopy in the superconducting state observed the gap opening without distinct coherence peaks implying the nodal structure,¹³ in contrast to the two coherence peaks clearly observed in MgB2.14 It should be noted that "cleanliness" in terms of the electron mean-free path is necessary and common conditions to the occurrence of the multigap and the non-s-wave (e.g., p- or d-wave) superconductivities, and thus these are cooccurrable in the "clean" system.¹⁵ In the multigap system, we should also take into account another possibility of the extended s-wave $(s_+$ -wave) superconductivity in which the sign of the order parameter changes between the different Fermi sheets. This has recently been supposed as a possible

pairing symmetry for the FeAs systems, both theoretically¹⁶ and experimentally.¹⁷ The recent and the past experimental reports in Lu₂Fe₃Si₅ require studies on verification of the sign reversal of the superconducting order parameter.

The effect of impurity scattering is sensitive to the phase of the superconducting gap function.¹⁸ The s-wave superconductivity is robust against nonmagnetic impurities while strongly suppressed by magnetic impurities. On the contrary, the non-s-wave even-parity superconductivity, with the presence of nodes in the gap, is sensitive to both nonmagnetic and magnetic impurities. The s_{\pm} -wave superconductivity, with the sign change of the order parameter between the different Fermi sheets, is expected to exhibit the impurity similar effects to the non-s-wave even-parity superconductivity.19

This Rapid Communication reports study of nonmagnetic and magnetic impurity effects on the superconductivity of Lu₂Fe₃Si₅ by small-amount substitution of nonmagnetic Sc, Y, and magnetic Dy for Lu. Earlier, a brief account of magnetic susceptibility studies in the solid solutions $(Lu_{1-x}R_x)_2Fe_3Si_5$ (R=Sc, Y, and Dy-Tm) was reported in which T_c was depressed with R substitutions.¹² The present study particularly takes interest in the effect of disorder on the superconductivity in Lu₂Fe₃Si₅, and we study the correlation between T_c and the residual resistivity. We investigate structural, magnetic, and electrical properties of polycrystalline $(Lu_{1-x}R_x)_2Fe_3Si_5$ (R=Sc, Y, and Dy). In addition, we investigate anisotropy of electrical resistivity in a high-purity Lu₂Fe₃Si₅ single crystal, motivations of which are described later with the results.

Polycrystals of $(Lu_{1-x}Sc_x)_2Fe_3Si_5$, $(Lu_{1-x}Y_x)_2Fe_3Si_5$ (x = 0-0.07 and 1), and $(Lu_{1-x}Dy_x)_2Fe_3Si_5$ (x=0-0.05 and 1) were prepared by arc melting stoichiometric amounts of high-purity elements in Zr-gettered Ar atmosphere. To ensure the sample homogeneity, the arc melting was repeated with turning over the melted ingot for more than ten times. A high-purity single crystal of $Lu_2Fe_3Si_5$ was grown by the floating-zone method. The polycrystalline and the single-crystalline samples were annealed at 1050 °C for 2 weeks. Powder x-ray diffraction patterns showed that all the samples crystallize in the Sc_2Fe_3Si_5-type structure without any additional peak. dc magnetic susceptibilities and electrical resistivities were measured by using the Quantum Design Physical Property Measurement System.

FIG. 1. (Color online) The unit-cell volumes of $(Lu_{1-x}Sc_x)_2Fe_3Si_5$, $(Lu_{1-x}Y_x)_2Fe_3Si_5$, and $(Lu_{1-x}Dy_x)_2Fe_3Si_5$ as functions of impurity concentration *x*. Solid, dotted, and dashed lines denote the Vegard's law in $(Lu_{1-x}Sc_x)_2Fe_3Si_5$, $(Lu_{1-x}Y_x)_2Fe_3Si_5$, and $(Lu_{1-x}Dy_x)_2Fe_3Si_5$, respectively.

Figure 1 depicts the unit-cell volumes of $(Lu_{1-x}Sc_x)_2Fe_3Si_5$, $(Lu_{1-x}Y_x)_2Fe_3Si_5$, and $(Lu_{1-x}Dy_x)_2Fe_3Si_5$ as functions of the impurity concentration x. The Vegard's law lines expected from the unit-cell volumes of Lu₂Fe₃Si₅ (576.7 Å), Sc₂Fe₃Si₅ (553.4 Å), Y₂Fe₃Si₅ (597.1 Å), and Dy₂Fe₃Si₅ (595.7 Å) are also presented. It is evident that all the samples obey Vegard's law: the unit-cell volume increases with x in $(Lu_{1-x}Y_x)_2Fe_3Si_5$ and $(Lu_{1-x}Dy_x)_2Fe_3Si_5$, while it decreases with x in $(Lu_{1-x}Sc_x)_2Fe_3Si_5$. These results ensure that Y, Sc, and Dy atoms are properly introduced as impurities into the parent Lu₂Fe₃Si₅ phase with the Lu-site substitutions.

Figure 2 depicts the magnetic susceptibilities of the polycrystalline $Lu_2Fe_3Si_5$, $(Lu_{1-x}Y_x)_2Fe_3Si_5$ (x=0.05), $(Lu_{1-x}Sc_x)_2Fe_3Si_5$ (x=0.07), and $(Lu_{1-x}Dy_x)_2Fe_3Si_5$ (x=0.03 and 0.05) as functions of temperature with $H=10\ 000\ Oe$. $(Lu_{1-x}Dy_x)_2Fe_3Si_5$ exhibits the pronounced Curie tail due to the inclusion of the magnetic Dy atoms, in contrast to the nonmagnetic behavior in $Lu_2Fe_3Si_5$, $(Lu_{1-x}Y_x)_2Fe_3Si_5$, and $(Lu_{1-x}Sc_x)_2Fe_3Si_5$. Here, we estimate the concentration of Dy atoms in the present $(Lu_{1-x}Dy_x)_2Fe_3Si_5$ from the Curie-Weiss

FIG. 2. (Color online) The magnetic susceptibilities of polycrystalline Lu₂Fe₃Si₅, (Lu_{1-x}Y_x)₂Fe₃Si₅ (x=0.05), (Lu_{1-x}Sc_x)₂Fe₃Si₅ (x=0.07), and (Lu_{1-x}Dy_x)₂Fe₃Si₅ (x=0.03 and 0.05) as functions of temperature with H=10 000 Oe. Inset shows the superconducting transitions with H=10 Oe.

PHYSICAL REVIEW B 80, 100502(R) (2009)

FIG. 3. (Color online) The electrical resistivity of singlecrystalline ($I \parallel [001]$ and $I \parallel [110]$) and polycrystalline Lu₂Fe₃Si₅ as functions of temperature. Inset shows the low-temperature resistivities normalized to the values at 300 K.

behavior. The magnetic moment of Dy atom in Dy₂Fe₃Si₅ estimated from the Curie-Weiss behavior is $\mu = 10.4\mu_B$, which is close to the free-ion value ($\mu = 10.6\mu_B$). Using $\mu = 10.4\mu_B$, the Curie-Weiss analysis tells us that 3.07% and 4.92% of Lu atoms are substituted by Dy atoms in the x = 0.03 and 0.05 samples of $(Lu_{1-x}Dy_x)_2Fe_3Si_5$, respectively, ensuring that the Dy atoms are properly doped as magnetic impurities in these samples. The inset to Fig. 2 displays the low-temperature magnetic susceptibilities with H=10 Oe, exhibiting the diamagnetism due to the superconducting transition. For all the samples applied in the present study, the onset of the diamagnetism coincides with that of the zero-resistance transition, and we adopt these onset temperatures as T_c .

The electrical resistivities of single-crystalline and polycrystalline Lu₂Fe₃Si₅ are presented in Fig. 3 as functions of temperature. Superconducting transition occurs at $T_c = 6.1$ and 5.8 K in the single-crystalline and the polycrystalline samples, respectively. For the single crystal, we investigate the anisotropy of the resistivity with the current I parallel and perpendicular to the crystal c axis, $I \parallel [001]$ and $I \parallel [110]$, respectively. As shown in Fig. 3, the *c*-axis resistivity ρ^c is less than one third of the in-plane resistivity ρ^{ab} in the whole temperature range. The normal-state residual resistivities are $\rho_0^c = 7.0 \ \mu\Omega$ cm and $\rho_0^{ab} = 22 \ \mu\Omega$ cm, respectively. At 300 K, the polycrystalline resistivity ρ^p exhibits an intermediate value between the single-crystalline ρ^c and ρ^{ab} , $\rho^c(300 \text{ K})$ $< \rho^{p}(300 \text{ K}) < \rho^{ab}(300 \text{ K})$. $\rho^{p}(300 \text{ K})$ is close to but smaller than $\rho^{ab}(300 \text{ K})$, indicating that ρ^{p} is a weighted average of ρ^c and ρ^{ab} which dominantly picks up ρ^{ab} as a component rather than ρ^c . As the temperature is lowered below ~140 K, ρ^p becomes slightly larger than ρ^{ab} . The normal-state residual resistivity of the polycrystal is ρ_0^p =30 $\mu\Omega$ cm, which is larger than ρ_0^c and ρ_0^{ab} , indicating that the polycrystal is "dirty" compared to the single crystal in terms of the electron mean-free path.

The inset to Fig. 3 shows the low-temperature resistivities ρ^c , ρ^{ab} , and ρ^p normalized to the values at 300 K, $\rho(T)/\rho(300 \text{ K})$. It is evident that ρ^c and ρ^{ab} exhibit almost identical $\rho(T)/\rho(300 \text{ K})$: for the residual resistivities ρ_0^c and ρ_0^{ab} , $\rho_0/\rho(300 \text{ K})=0.04$. Since $\rho(T)/\rho(300 \text{ K})$ cancels the

FIG. 4. (Color online) Temperature dependence of the normalized resistivity $\rho(T)/\rho(300 \text{ K})$ for (a) $(Lu_{1-x}Y_x)_2Fe_3Si_5$ and $(Lu_{1-x}Dy_x)_2Fe_3Si_5$ and (b) $(Lu_{1-x}Sc_x)_2Fe_3Si_5$.

contribution of the carrier density, and purely sees the variation in the electron mean-free path, the isotropy of $\rho(T)/\rho(300 \text{ K})$ in the single crystal indicates the isotropy of the electron mean-free path. Thus, it is ensured that the normalized resistivity $\rho(T)/\rho(300 \text{ K})$ is a good measure of the electron mean-free path regardless of single crystal and polycrystal in Lu₂Fe₃Si₅. Similar to the "absolute" residual resistivities ρ_0^p , ρ_0^c , and ρ_0^{ab} , the normalized residual resistivity $\rho_0/\rho(300 \text{ K})$ in the inset to Fig. 3 tells us that the polycrystalline Lu₂Fe₃Si₅ is dirty compared to the single crystal.

On the basis of the isotropic electron mean-free path revealed by the single-crystalline resistivities, we now study the influence of disorder on the superconductivity in $Lu_2Fe_3Si_5$ by investigating the variation in T_c with $\rho_0/\rho(300 \text{ K})$ in the polycrystalline samples. Figures 4(a) and 4(b) depict the normalized resistivity $\rho(T)/\rho(300 \text{ K})$ of nonmagnetic $(Lu_{1-x}Y_x)_2Fe_3Si_5$ and $(Lu_{1-x}Sc_x)_2Fe_3Si_5$ as a function of temperature, respectively. Figure 4(a) also displays $\rho(T)/\rho(300 \text{ K})$ of magnetic $(Lu_{1-x}Dy_x)_2Fe_3Si_5$. It is noteworthy that the small amount of the Lu-site substitution in nonmagnetic $(Lu_{1-x}Y_x)_2Fe_3Si_5$ and $(Lu_{1-x}Sc_x)_2Fe_3Si_5$ rapidly depresses T_c with the systematic increase in the residual resistivity. Here, we would like to comment on the chemical pressure effect on T_c in Lu₂Fe₃Si₅. The unit-cell volume variations in Fig. 1 tell us that Y and Sc substitutions for Lu apply negative and positive chemical pressures, respectively. It is noted that T_c of Y₂Fe₃Si₅ and Lu₂Fe₃Si₅ under hydrostatic pressure exhibits positive and negative pressure coefficients, $dT_c/dp > 0$ and $dT_c/dp < 0$, respectively.²⁰ These T_c variations imply that both the negative and the positive pressures might lower T_c in Lu₂Fe₃Si₅. However, considering the difference of T_c in Lu₂Fe₃Si₅ (6.1 K)-Y₂Fe₃Si₅ (2.6 K), and $Lu_2Fe_3Si_5-Sc_2Fe_3Si_5$ (4.6 K) the expected decreases in T_c by the chemical pressure for $(Lu_{1-x}Y_x)_2Fe_3Si_5$ and $(Lu_{1-r}Sc_x)_2Fe_3Si_5$ at x=0.07 are $\Delta T_c = -0.25$ and -0.1 K, re-

PHYSICAL REVIEW B 80, 100502(R) (2009)

FIG. 5. (Color online) The T_c depression of Lu₂Fe₃Si₅ as a function of nonmagnetic (Y,Sc) and magnetic (Dy) impurity concentrations *x*. Nonmagnetic (Zn) and magnetic (Mn) impurity effects on T_c in MgB₂ (Ref. 21) are displayed for comparison. Inset shows the T_c depression of Lu₂Fe₃Si₅ as a function of the normalized residual resistivity $\rho_0/\rho(300 \text{ K})$.

spectively. These values are much smaller than the T_c depression of $(Lu_{1-x}Y_x)_2Fe_3Si_5$ and $(Lu_{1-x}Sc_x)_2Fe_3Si_5$ in Fig. 4; $\Delta T_c = -2.5$ K at x=0.07. Thus, we conclude that the rapid T_c depressions of Lu₂Fe₃Si₅ in Fig. 4 are dominated by the pair breaking by impurities. And the present results clearly indicate that the introduction of disorder gives rise to the strong pair breaking in Lu₂Fe₃Si₅. For magnetic $(Lu_{1-x}Dy_x)_2Fe_3Si_5$, T_c is also steeply depressed with the Dy doping. Comparing the Dy- and the Y-doped samples at x=0.05, which exhibit almost the same residual resistivities, $T_c=3.8$ K of $(Lu_{0.95}Dy_{0.05})_2Fe_3Si_5$ is a little lower than $T_c=4.2$ K of $(Lu_{0.95}Y_{0.05})_2Fe_3Si_5$. In $(Lu_{1-x}Dy_x)_2Fe_3Si_5$, as evident from Fig. 2, the Dy doping introduces the magnetic scattering potential. Thus the pair breaking in $(Lu_{1-r}Dy_r)_2Fe_3Si_5$ a little stronger than $(Lu_{1-x}Y_x)_2Fe_3Si_5$ is attributed to the magnetic scattering, which is compatible with the spin-singlet pairing in Lu₂Fe₃Si₅.⁹

Figure 5 displays nonmagnetic and magnetic impurity effects on T_c in Lu₂Fe₃Si₅ (this work) compared with MgB₂.²¹ For MgB₂, the T_c depression by nonmagnetic impurities (Zn) is negligibly small while magnetic impurities (Mn) strongly depress T_c , indicative of the *s*-wave pairing. Lu₂Fe₃Si₅, on the other hand, exhibits a strong T_c depression with doping regardless of nonmagnetic and magnetic impurities. As already mentioned in conjunction with Fig. 4, T_c of Lu₂Fe₃Si₅ is rapidly depressed by nonmagnetic impurities in accordance with the increase in the residual resistivity. Such a disorder-sensitive superconductivity compellingly suggests *the sign reversal of the superconducting order parameter*.

In the sign-reversal order parameter, it is expected that the pair breaking by disorder results in vanishing of T_c at a critical residual resistivity $\rho_0(0)$ in which the electron mean-free path l_0 is on the order of the superconducting coherence length ξ_0 ($l_0 \approx \xi_0$). The inset to Fig. 5 shows the T_c depression of Lu₂Fe₃Si₅ as a function of the normalized residual resistivity $\rho_0/\rho(300 \text{ K})$. The dotted line in this figure is a linear fit to the experimental plots of nonmagnetic

(Lu_{1-x}Y_x)₂Fe₃Si₅ and (Lu_{1-x}Sc_x)₂Fe₃Si₅. Extrapolating this line to $T_c=0$ expects that the superconductivity disappears at $\rho_0(0)/\rho(300 \text{ K}) \approx 0.3$. For the estimation of the critical residual resistivity $\rho_0(0)$, we assume that the temperaturedependent part of the resistivity, $\Delta\rho(T)=\rho(T)-\rho_0$, is independent of the small amount of the nonmagnetic impurities. And we utilize $\Delta\rho(300 \text{ K})$ of the single-crystalline Lu₂Fe₃Si₅ in Fig. 3 for the $\rho_0(0)$ estimation: *c*-axis $\Delta\rho^c(300 \text{ K})=158 \ \mu\Omega$ cm and in-plane $\Delta\rho^{ab}(300 \text{ K})$ =513 $\mu\Omega$ cm, respectively. Using these $\Delta\rho(300 \text{ K})$ values, $\rho_0(0)/\rho(300 \text{ K})=\rho_0(0)/[\rho_0(0)+\Delta\rho(300 \text{ K})]=0.3$ leads to the critical residual resistivities, *c*-axis $\rho_0^c(0)=68 \ \mu\Omega$ cm and in-plane $\rho_0^{ab}(0)=220 \ \mu\Omega$ cm, respectively.

Concerning the in-plane $\rho_0^{ab}(0) = 220 \ \mu\Omega$ cm, we would like to roughly estimate the corresponding electron meanfree path l_0^{ab} by using the formula $l_0^{ab} = \hbar (3 \pi^2)^{1/3} / [e^2 n^{2/3} \rho_0^{ab}(0)]$. For Lu₂Fe₃Si₅, the in-plane Hall coefficient in low temperatures, $R_H \approx 1.5 \times 10^{-9}$ m³ C⁻¹,⁶ leads to $1/R_H e \approx 4.2 \times 10^{27}$ m⁻³. Substituting this $1/R_H e$ value for the carrier density *n* in the above l_0^{ab} formula calculates $l_0^{ab} \approx 22$ Å. On the other hand, the upper critical field $\mu_0 H_{c2}(0) \approx 13$ T with $H \parallel c$ in Lu₂Fe₃Si₅ (Refs. 6 and 7) calculates the in-plane coherence length $\xi_0^{ab} \approx 50$ Å. These l_0^{ab} and ξ_0^{ab} are comparable within an order of magnitude, but $l_0^{ab} < \xi_0^{ab}$. We note here that the temperature-dependent R_H in Lu₂Fe₃Si₅ is indicative of the multiband feature.⁶ In the multiband system, $1/R_H e$ is no longer the correct expression

- ¹Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. **130**, 3296 (2008).
- ²H. F. Braun, Phys. Lett. A **75**, 386 (1980).
- ³H. F. Braun, in *Ternary Superconductors*, edited by G. K. Shenoy, B. D. Dunlap, and F. Y. Fradin (North-Holland, Amsterdam, 1981), p. 225.
- ⁴H. F. Braun, C. U. Segre, F. Acker, M. Rosenberg, S. Dey, and P. Deppe, J. Magn. Magn. Mater. **25**, 117 (1981).
- ⁵D. C. Johnston and H. F. Braun, in *Superconductivity Ternary Compounds II*, edited by M. B. Maple and Ø. Fischer (Springer-Verlag, Berlin, 1982).
- ⁶Y. Nakajima, T. Nakagawa, T. Tamegai, and H. Harima, Phys. Rev. Lett. **100**, 157001 (2008).
- ⁷R. T. Gordon, M. D. Vannette, C. Martin, Y. Nakajima, T. Tamegai, and R. Prozorov, Phys. Rev. B **78**, 024514 (2008).
- ⁸H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie, Nature (London) **418**, 758 (2002).
- ⁹R. J. Noer, T. P. Chen, and E. L. Wolf, Phys. Rev. B **31**, 647 (1985).
- ¹⁰C. B. Vining, R. N. Shelton, H. F. Braun, and M. Pelizzone, Phys. Rev. B **27**, 2800 (1983).
- ¹¹Y. Xu and R. N. Shelton, Solid State Commun. **68**, 395 (1988).
- ¹²H. F. Braun and C. U. Segre, Bull. Am. Phys. Soc. 26, 343 (1981).
- ¹³T. Baba, M. Matsunami, R. Eguchi, Y. Ishida, A. Chainani, M. Okawa, K. Ishizaka, T. Kiss, T. Shimojima, H. Sasame, T. Watanabe, Y. Takano, Y. Senba, H. Ohashi, T. Togashi, S. Watanabe, X. Y. Wang, C. T. Chen, and S. Shin (unpublished).
- ¹⁴S. Tsuda, T. Yokoya, T. Kiss, T. Shimojima, S. Shin, T. Togashi, S. Watanabe, C. Zhang, C. T. Chen, S. Lee, H. Uchiyama, S.

for the carrier density and might become larger than the true carrier density when the contributions of electron and hole bands cancel each other in R_{H} .²² The smaller l_0^{ab} than ξ_0^{ab} might be attributed to the overestimation of *n* due to the multiband feature.

The present study provides a strong evidence for the sign reversal of the superconducting order parameter in the multigap structure in Lu₂Fe₃Si₅. However, the present study is insufficient to distinguish between the non-*s*-wave evenparity and the s_{\pm} -wave pairings. Further experiments which probe angle-resolved information, such as magnetothermal experiments with rotating magnetic field, and angle-resolved photoemission spectroscopy should be performed to determine the superconducting gap structure of Lu₂Fe₃Si₅.

In summary, we studied the effect of nonmagnetic and magnetic impurities on the superconductivity of $Lu_2Fe_3Si_5$ by small-amount substitution of nonmagnetic Y, Sc, and magnetic Dy for Lu. The rapid T_c depression by nonmagnetic impurities in accordance with the increase in residual resistivity reveals the disorder-sensitive superconductivity in $Lu_2Fe_3Si_5$, providing a strong evidence for the sign reversal of the superconducting order parameter.

We thank T. Baba and Y. Nakajima for helpful comments. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Tajima, N. Nakai, and K. Machida, Phys. Rev. B **72**, 064527 (2005).

- ¹⁵Y. Kasahara, T. Iwasawa, H. Shishido, T. Shibauchi, K. Behnia, Y. Haga, T. D. Matsuda, Y. Onuki, M. Sigrist, and Y. Matsuda, Phys. Rev. Lett. **99**, 116402 (2007).
- ¹⁶I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. **101**, 057003 (2008); K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, *ibid.* **101**, 087004 (2008).
- ¹⁷A. D. Christianson, E. A. Goremychkin, R. Osborn, S. Rosenkranz, M. D. Lumsden, C. D. Malliakas, I. S. Todorov, H. Claus, D. Y. Chung, M. G. Kanatzidis, R. I. Bewley, and T. Guidi, Nature (London) **456**, 930 (2008); G. Mu, H. Luo, Z. Wang, L. Shan, C. Ren, and H. H. Wen, Phys. Rev. B **79**, 174501 (2009); Y. Machida, K. Tomokuni, T. Isono, K. Izawa, Y. Nakajima, and T. Tamegai, J. Phys. Soc. Jpn. **78**, 073705 (2009).
- ¹⁸A. V. Balatsky, I. Vekhter, and J. X. Zhu, Rev. Mod. Phys. **78**, 373 (2006).
- ¹⁹A. A. Golubov and I. I. Mazin, Phys. Rev. B 55, 15146 (1997).
- ²⁰C. U. Segre and H. F. Braun, in *Physics of Solids Under High Pressure*, edited by J. S. Schilling and R. N. Sheloton (North-Holland, Amsterdam, 1981), p. 381.
- ²¹S. Xu, Y. Moritomo, K. Kato, and A. Nakamura, J. Phys. Soc. Jpn. **70**, 1889 (2001).
- ²²For instance, the Hall coefficient R_H of a two-band system consisting of electron and hole bands is written as $R_H = (n_h \mu_h^2 n_e \mu_e^2) / [e(n_h \mu_h + n_e \mu_e)^2]$. Here, $n_h (n_e)$ is the carrier density of the hole (electron) band and $\mu_h (\mu_e)$ is the mobility of the hole (electron) band.